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Perimeter Bethe ansatz 

R J Baxter 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, GPO Box 4, Canberra, ACT 2601, Australia 

Received 15 September 1986 

Abstract. The partition function of a finite Z-invariant six-vertex lattice model (with a 
prescribed arrow configuration at the boundary) is given. The expression is of the same 
type that occurs in the Bethe ansatz, but there are no ‘wavenumber’ equations to solve. 

1. Introduction 

Lieb (1967a, b) and Sutherland (1967) solved the regular square lattice zero-field 
six-vertex model, in that they obtained explicit solutions for the partition function per 
site Z1” in the thermodynamic large-lattice limit. Their results have been generalised 
to a planar ‘Z-invariant’ eight-vertex model (Baxter 1978). 

Special cases of the six- and eight-vertex models are the Ising (Onsager 1944) and 
free-fermion (Fan and Wu 1970) models. For a lattice of N sites these models have 
the property that the partition function 2 can be expressed in terms of Pfaffians, and 
hence in terms of 4 N  by 4 N  (or 2 N  by 2 N )  determinants. For a regular (i.e. 
homogeneous) lattice these determinants are cyclic, so one can express Z in terms of 
explicit N-fold products. The passage to the infinite-lattice limit is then straightforward. 

The situation is nothing like so satisfactory for the general six- and eight-vertex 
models. There one can write down the Bethe ansatz for eigenvectors and eigenvalues 
of the transfer matrix. However, for a square lattice of 2 n  columns, for each eigenvalue 
one has to solve n non-linear equations in n unknowns (the ‘wavenumbers’ k ,  , . . . , k,,). 
This can only be done explicitly in the large-n limit, and even then the eigenvalue 
spectrum has not been obtained explicitly. (It involves solving a system of non-linear 
integral equations: Yang and Yang 1969, Gaudin 1971, Johnson and McCoy 1972, 
Takahashi and Suzuki 1972, Fowler 1982, Zotos 1982.) Usually one can solve explicitly 
only for the largest (and near-largest) eigenvalue, which limits one to considering the 
full by 03 square lattice. One disadvantage of this is that the necessary analysis 
depends on the values of the input parameters, namely the Boltzmann weights of the 
model. For positive real weights there seems to be no problem, but for negative or 
complex weights difficulties can arise (in particular, in determining the contributing 
eigenvalue of largest modulus). Such complex weights can arise when mapping one 
model to another (e.g. the Potts to the six-vertex model: Baxter et a1 1976), and the 
partition function may then be sensitive to boundary conditions (Baxter 1982a, 1986). 

The purpose of this paper is to show that for a general finite Z-invariant six-vertex 
model, the partition function is given explicitly (apart from a simple factor) by the 
Bethe ansatz expression (3.2). However, in this case the U,, . . . , U, (which are related 
to the ‘wavenumbers’ k ,  , . . . , k , )  do not need to be evaluated from a complicated set 
of simultaneous equations: they are known explicitly. 
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2558 R J Baxter 

For a lattice of n lines the expression (3.2) is a sum of n !  terms, so it is still far 
from being immediately useful. Further, some delicate limits need to be taken in order 
to return to the homogeneous square lattice. Even so, there has been some success 
recently in handling Bethe ansatz expressions (Gaudin et a1 1981, Korepin 1982, 
Gaudin 1983, appendix J): some special cases of the general result of this paper are 
implicitly contained in the second reference. The author’s hope is that it may be 
possible to apply similar techniques to (3.2), so as to reduce it to a tractable expression, 
perhaps a determinant. 

2. 2-invariant six-vertex model 

As in Baxter (1978), consider some simply connected convex planar domain 9, such 
as the interior of a circle, and draw n straight lines within it, starting and ending at 
the boundary (perimeter) of 9. No three lines are allowed to intersect at a common 
point. 

The intersections of these lines form the sites of a graph, or ‘lattice’, 2. The line 
segments between sites form the edges of 2. Each site is the end-point of four edges. 

A typical graph 2 is shown in figure 1. Going anti-clockwise round the boundary 
from some point B, label the end-points of the lines of 2 as 1,2, .  . . ,2n, as in figure 
1. If a line has end-points i and J, then we shall refer to it as ‘the line ( i , j ) ’  where 
1 < i <  j <  2n. 

Figure 1. A typical graph 9, showing the labelling of the end-points. 

Let A be a given constant (a complex number), and with each end-point i associate 

(2.1) 
We shall call vi the ‘left’ rapidity of the line ( i ,  j ) ,  and U, the ‘right’ rapidity (having 
in mind the orientation of figure 2). We shall also take V = {U,, . . . , uZn} to be the set 
of all 2n rapidities, V, to be the set of n left-rapidities, and V, the set of n right-rapidities. 
Thus v =  v,u v,. 

a ‘rapidity’ vi .  For each line ( i , j )  impose the constraint 

uj = ui + A. 

Two functions that we shall use are 

f( U )  = sinh( u)/sinh( A - U )  g ( u )  = sinh(A)/sinh(A -U). (2.2) 
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Consider two lines ( i ,  j )  and ( k ,  I ) ,  where i < k. There are three possible orderings 
of i, j ,  k l ,  and the corresponding line arrangements (distorted so as to flatten the 
boundary) are shown in figure 2. Any site of 2’ is the intersection of two lines ( i , j )  
and ( k ,  I ) ,  so can be drawn as in figure 2(a ) ,  and referred to as site ( i , j l k ,  I ) .  

Now construct a six-vertex model on 2. Place arrows on the edges of 9 so that 
at each site there are two arrows in and two arrows out (the ‘ice-rule’). Then there 
are six allowed arrangements of arrows at a site ( i , j l k ,  I )  of 2, as shown in figure 3 .  
With the six arrangements associate weights U , ,  . . . , w 6 ,  where 

w t = w * = l  oj = 0 4  = f( Uk - U,) = wg = g( ~k - ut). (2.3) 
In addition, if the pair of lines ( i , j )  and ( k ,  I )  do not intersect in 9, it is convenient 

to associate with them a weight ab if they are in configuration b of figure 2 (0, if in 
configuration c), where 

0Zb = f ( U k  -U,) n, = 1 .  (2.4) 
These weights n b ,  0, are independent of the arrow directions on the lines, so trivially 
modify the partition function. 

The weights (2.3)-(2.4) are all real if A, u t ,  . . . , U, are either all real, or all pure 
imaginary. 

We use fixed boundary conditions, in which we specify the arrows on the 2n 
boundary edges. Because of the ice rule, n of these must point into 9, and n out. 
Thus we can specify the boundary arrows by giving the end-point locations xl, , . , , x, 
of the out-pointing arrows, where 

1 s x1 < x2 <. . . < x, s 2n. (2.5) 
The partition function Z is then a function of X = {x, , . , . , x,} and V = { U,, , , . , uZn}, 
so we can write it as Z ( X  I V). It is defined by 

Z ( X l  V ) = c  n (weights) 
c ( I J I k J )  

where the sum is over all allowed arrangements of arrows on the internal edges of 2, 
and the product is over all the n ( n  - 1) /2  pairs ( i , j ) ,  ( k ,  I )  of lines, each pair being 
given the appropriate weight determined by (2.3) and (2.4). 

Thus the product in (2.6) is over all sites of 2, but also includes the arrow- 
independent weights (2.4). 

This model is Z-invariant (Baxter 19781, which means that any triplet of lines 
satisfies the ‘triangle’ (or Young-Baxter) equations. This implies that Z ( X  1 V) is 
unchanged by shifting the lines of 2, provided their order at the boundary (and of 
course the boundary arrow arrangement) is kept fixed. 

i o1  ( b )  It1 

Figure 2. The three possible arrangements of two lines (i, j )  and ( k ,  I ) .  

S 

1 2 3 L 5 6 
-zZx3. XzFS. .m- 2 x ? s .  m. .2353. 
Figure 3. The six possible configurations of arrows at a site S of 2’: S may be deep inside 
2, the arrows being on the neighbouring four edges of S .  
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2.1. Recursion relation 

We can consider the effect of passing the end-points of two different lines through one 
another. This will give us recursion relations for Z ( X  I V ) .  

At first sight there are six cases to consider: interchanging i with k, k with j ,  or j 
with 1 in figure 2 ( a ) ,  j with k in figure 2 ( b ) ;  or i with k or 1 with j in figure 2 ( c ) .  
However, the last three are the results of the first, so we need only consider interchanges 
of two consecutive end-points in figure 2 ( a ) :  i with k, k with j, o r j  with 1. 

Whichever pair we select, they must be adjacent end-points of 2: let them be m, 
m + 1 (where 1 s m < 2 n ) .  Thus the three cases are i, k = m, m + 1; k, j = m, m + 1; and 
j ,  I = m, m + 1. The corresponding end-point rapidities are U,, U,+, . 

As the two end-points come together, the site S formed by the intersection of the 
two lines approaches them: we obtain the picture in figure 4, which also shows the six 
possible arrow arrangements round the site. 

Figure 4 is of course just a distortion of figure 3, but the distortion is different for 
the three cases. Let w ; ,  . . . , wk be the weights of the six arrangements in figure 4. 
They can be obtained by translating back to figure 3 and using (2 .3) .  It is remarkable 
that for all three cases 

w ;  = o;= 5 
U ;  = w ;  = [g( U,+ 1 - U, ). 

w j  = w : =  ( f ( u , + ,  - U,) 
(2.7) 

Here 5 is a normalisation factor of w ; ,  . . . , U ;  that does depend on the case under 
consideration: for the second case ( k , j  = m, m + 1)5 = ab; otherwise [ = 0, = 1. 

m m r l  
1 2 3 4 5 6 

Figure 4. A site S close to the boundary, showing the six arrow configurations. 

As the two end-points pass through one another, they reverse their sequence and 
the site S moves outside 9. In the first and third cases the resulting line configuration 
is that of figure 2 ( c ) ,  while in the second case it is that of figure 2 ( b )  (with the same 
labels i, j ,  k, I). Thus 5 is just the weight of the new disjoint line configuration. 

Passing the end-points through one another is equivalent to raising the boundary 
in figure 4 through the site above it. Fixing the lower two arrows and considering the 
possible arrangements of the upper two, it follows that 

Z( .  . .) V )  = Z( .  . .I V ’ )  

z (. . . m . . .I V )  = g ( U, + - U, ) z ( . . . m . . .I v’) +f( U, + I - U, ) z (. . . m + 1 . . .I v’) 
z(. . . m + 1 . . .I V )  = f (  U,+ I - U, )z(. . . m . . .I v‘) + g( U,+, - U, )z( . . . m + 1 . . .I v’) 
Z( . . .  m , m + l  . . . I  v ) = Z (  . . .  m , m + l  . . . I  v’). 
Here we have used some shorthand notation: V = { u I  , . . . , u Z n }  and V’ is V with U, 
and U,+, interchanged. Dots refer to locations x, that are not equal to m or m + 1, 

(2.8) 
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and are given the same meaning in all terms within an equation. Thus . . . in the first 
equation means xI , . , . , x,, with no x, = m or m + 1: throughout the second and third 
equations . . . p . .  . (with p = m or m +  1 )  means xl , .  . . , x ~ - ~ ,  p ,  x , + ~ ,  . . . , x, (for 
1 s r <  n, x,-~ < m, x,+~ > m + 1 ) ;  and in the fourth equation . . . m, m + 1 . . . means 
x ,,..., x , - ~ ,  m, m + l , ~ , + ~ , . . . , x , .  

We can regard Z ( X  I V) as the element X of a vector z (  V). Since the equations 
(2.8) are linear, they can be written as 

z (  V) = A ( u m + 1 -  u m ) z ( V ’ )  (2.9) 

where A( v , + ~  - U,) is the matrix of coefficients of the RHS: with an appropriate ordering 
of elements, it breaks up into one-by-one and two-by-two diagonal blocks. It satisfies 
the relation 

(2.10) A( u )A(  - U )  = U 

so (2.9) can also be written as 

Z (  V’) = A( U, - u,+~)z( V). (2.11) 

This is just (2.9) with U, interchanged with u , + ~ ,  so (2.8) remains true if U, and u , + ~  
are interchanged. 

It follows that (2.8) is true regardless of whether or not the end-points m and m + 1 
belong to lines that intersect inside 9, so long as the lines are distinct (i.e. m and m + 1 
must not be end-points of the same line). 

2.2. End condition 

We can in principle make repeated use of (2.8) to relate Z ( X l  V) to the partition 
function of the trivial graph shown in figure 5, where 

(2.12a) 

Denote V in this case as V,. For every pair ( j ,2n+l- j )  of end-points (where 
j = 1 , .  .., n ) ,  there must now be just one out-pointing arrow. Setting y,= 
min(x,, 2n + 1 -xr) and noting that all the line pairs are in configuration 2, and hence 

U 2 n + l - j  = u j + A  j = 1 ,  . . . , n. 

.-- 

--. 

I 1  

, 

, 
I 
0 

, 

Figure 5. A trivial graph of n non-intersecting straight lines. 
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have weight 0, = 1, it follows that for the graph in figure 5 (for all x1 , . . . ,4x, satisfying 
(2.5)), 

z(x~v,)  = 1 if { y l , .  . . , y n }  is a permutation of { I , .  . . , n} 

= 0 otherwise. (2.126) 

For any straight-line graph 9, Z ( X  1 V )  is defined by (2.8) and (2.12). We can 
think of (2.12) as an ‘end condition’ supplementing the recursion relation (2.8). 

2.3. Triangle relations 

Incidentally, the triangle relations take a particularly simple form in terms of the 
recursion matrix A( U )  (which can be thought of as a ‘vertex transfer matrix’). They are 

(2.13) 

for all complex numbers U, U ,  w. (This is equivalent to the six-vertex model case of 
equation (9.7.14) of Baxter 1982b.) 

Because of this property, Z ( X  I V )  is independent of the ordering of the (U,,,, u , , , + ~ )  
interchanges used to obtain it, via (2.8), from Z ( X  I Vo).  This is equivalent to saying 
that the model is 2-invariant. 

A ( u  - u ) A ( w  - u ) A ( w  - U )  = A ( w  - u ) A ( w  - u ) A ( u  - U )  

3. Bethe aosatz 

Define a ‘single-particle’ or ‘single out-arrow’ function 

x-1 2, 

4 ( u , x ) =  n sinh(u-uj+A)x n sinh(uj-U) (3.1) 
j = 1  j=x+l 

where 1 4 x S 2n and U is an arbitrary complex number. Obviously this depends also 
on the rapidities V = { u1 , . . . , u2,}. Further define 

f ( X l  VI U) = { n sinh( ui - uj + A)/sinh( uj - ui) 

(3.2) 

I P l r i i j r n  

X4(Ul,Xl)4(U2,X2) . ’ *  4 ( % ,  x,). 

Here U = {ul , . . . , U,} is some given set of complex numbers, as yet arbitrary. The 
summation is over all permutations P of ul , . . . , U,. 

3.1. Recursion relation 

For all values of U, this function f ( X 1 V l U )  satisfies the same recurrence relations 
(2.8) as Z ( X l  V ) .  The first o f  these relations can be established by noting that each 
function 4 ( u ,  x) is a symmetric function of U,,, and u , , , + ~ ,  provided x # m or m + 1. 
The second and third then follow from the single-particle relations 

4 ( ~ ,  m )  = g ( u m + I  - u m ) 4 ’ ( ~ ,  m) +f(um+l- u m ) 4 ‘ ( u ,  

+(U, m + 1) =f(um+l- u m  )t$‘(u, m) + g(vm+l- u m  )4 ‘ (  U, m + 1) 

+ 1) 
(3.3) 
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where +’(U, m )  is obtained from +( U, m )  by interchanging U, with u , + ~ .  The fourth 
of the relations (2.8), with Z(X 1 V) replaced by f ( X  I VI U ) ,  follows from the fact that 

J = sinh(u - u ’ + A ) + ( u ,  m ) + ( u ’ ,  m + 1) -sinh(u’- U +  A)+(u’ ,  m ) + ( u ,  m + 1) (3.4) 

is a symmetric function of U, and u , + ~ .  This can be established by noting that 

J = sinh(u - u ’ + A )  sinh(u,+, - U )  sinh(u’- U, + A )  

-sinh(u’- U + A )  sinh(u,+, -U’) sinh( u -U, + A )  (3 .5)  

(apart from factors independent of U, and u , + ~ ) .  Some elementary algebra reveals 
that (3.5) is symmetric in U,, U,+, . 

So far U has been arbitrary: from now on we require that 

U=v, (3.6) 

i.e. U is the set of n left-rapidities. 
The RHS of (3.2) is a symmetric function of u l ,  . . . , U,, so the ordering of the set 

V, in (3.6) is irrelevant and  the choice of U is unaffected by the fact that U, and u , + ~  
are interchanged in (2.8). Since m and m + 1 in (2 .8)  cannot be end-points of the same 
line, it is also true that the division of V into V, and V, is unchanged by using (2.8). 

3.2. End condition 

Now consider the basic graph of figure 5, where 

and u , + ~ ,  . , . , u2, can be regarded as given by ( 2 . 1 2 ~ ) .  Since the sum in (3.2) is over 
permutations, it follows that in the summand u I , .  . . , U, is a permutation of U,, . . . , U , ,  

i.e. 

(3.8) 

First consider the various arrow configurations at end-points n and n + l ,  i.e. the 
end-points of the right-hand line in figure 5. If the arrows at these points both point 
in, no x, in (3.2) is equal to n or n + 1. From (3.1) it follows that +(U?, x,) contains 
a factor sinh( U, - U , ) ,  so the summand in (3.2) contains a factor 

{UI , . . . , U,} = P{U,, . . . , U , } .  

fi sinh( uk - U,). 
k = l  

(3.9) 

From (3.8), one of u l ,  . . . , U, is equal to U,, so (3.9), and hencef(X 1 VI U ) ,  vanishes. 
If both arrows point out, so that x, = n, x ,+~  = n + 1 for some value of r, then the 

summand of (3.2) still contains the factor (3 .9) ,  but without the k = r, r +  1 terms. By 
grouping together the terms obtained by interchanging U, with u,+~, we also get the 
factor (3.41, and hence (3 .5) ,  with U = U,, U ’ =  u , + ~ ,  m = n. Using u , + ~  = U, + A ,  the 
factor (3.5) now simplifies to 

2 cosh A sinh( u, - U,) sinh(u,+, - U,) sinh( urtl  - u r ) .  (3.10) 

Thus this contributes the k = r, r +  1 terms and  again we get the full factor (3.9), so 
that f ( X 1  VI U )  vanishes. 
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If one arrow points in and one out (at end-points n and n + l ) ,  then either x, = n, 
x,+~ > n + 1, or x , -~ < n, x, = n + 1. In both cases we get a factor (3.9), but missing the 
k = r term. Thus the summand of (3.2) vanishes unless U, = U,, so we need only look 
at such terms. 

Consider all the factors in the summand (3.2) that involve U,, U, or u , , + ~ .  The 
double (i, j )  product gives a contribution 

fi Sinh(U,-uk+A) ( 3 . 1 1 ~ )  sinh( uk - U, + A )  n 
k = l  sinh(ur-Uk) k = r + l  sinh(uk-u,) ' 

The function 4(ur ,  n), or 4(u , ,  n + l ) ,  gives 

, - I  

sinh A sinh(u, - U, + A )  sinh(A + U, - ur), (3.11b) 
j = l  

and the j = n, n + 1 factors of the n - 1 other single particle functions 4(uk, xk) give 

r - l  n 

k = l  k = r + l  
n sinh( U, - U k )  sinh( A U, - Uk) X n sinh( Uk - U, ) sinh( Uk - U,) .  ( 3 . 1 1 ~ )  

Multiplying (3.1 l a )  and (3.11c), remembering that U, = U,, we get a combined factor 

fi sinh(A + U, - u k )  sinh(A - U, + u k ) .  
k = l  
# r  

(3.12) 

Since U, = U, and u l ,  . . . , u , - ~ ,  u , + ~ ,  . . . , U, is a permutation of u l ,  . . . , u , - ~ ,  (3.12) is 
the same as the product in (3.11b). Altogether we Obtain the factor 

fl 

R = sinh A n [sinh(A + U, - U,) sinh(A - U, + U,)]'. (3.13) 
J = l  
f r  

This multiplies all non-zero terms in the summand of (3.2). Removing it, noting that 
the sum is now over ( n  - l ) !  permutations of u l ,  . . . , u , - ~ ,  we obtain the original 
expression for f(XIVolU), but with n replaced by n - 1 ,  U ] ,  . . . , U, by u I , .  . . , u , - ~ ,  
and each xj constrained to the values 1 ,  . . . , n - 1,  n + 2 , .  . . , 2 n  (similarly for j in 
(3.1)). This is just the functionf(XIVol U )  for the graph in figure 5 ,  with the right-hand 
line removed: let us write it as If(xlvo(U)]r&ced. 

Thus for the graph in figure 5 ,  if there is one in arrow and one out arrow at the 
ends of the right-hand line, then 

otherwise 

f(XI vol U )  = 0. (3.146) 

We can now proceed by induction to establish that 

f (X I vol U )  = c if { y , ,  . . . , y,} is a permutation of ( 1 , .  . . , n}, 
= O  otherwise (3.15) 
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where 

c = RCreduced 

= (sinh A ) "  fl sinh2(A + U ,  - u j )  
I = r J s n  

I f J  

and y ,  = min(x,, 2n -t 1 -xr),  as in (2.126). 

(3.16) 

3.3. Expression f o r  Z(X1V) 

Thus the function C - ' f ( X l V l U ) ,  with U = V,, satisfies both the recursion relation 
(2.8) and the 'end-condition' (2.12). It follows that 

(3.17) 

i.e. the partition function of any 2-invariant six-vertex model is given by the Bethe 
ansatz expression (3.2) (divided by C), with u l ,  . . . , U, set to the left-rapidities. If no 
two lines of 9 are in the disjoint configuration 2( b) ,  then ul , . . . , U, = U,, . . . , U,. 

Note that the Bethe ansatz expression (3.2) is the same (apart from a normalisation) 
as that for the eigenvectors of the transfer matrix of the square lattice 2-invariant 
inhomogeneous six-vertex model (equations (79) and (80) of Baxter 1973) with 277, 
U,, wJ+ 7, N replaced by iA ,  iu,, iuJ, 2 n ) .  In that case, u l , .  . . , U, are given by, for 
i = 1, . . . , n, 

Z ( X  I V )  = C - m l  VI XI, 

" sinh(u,-u,+A) 
sinh(u, -U, - A ) '  

= - h 2  fl 2 n  sinh(u, - uJ + A )  
J = l  sinh(uJ -U,) l-I (3.18) 

This condition arises from cylindrical boundary conditions ( h  is a boundary field 
term) which do not apply here. Even so, since ui is equal to some left-rapidity uk, 

with corresponding right-rapidity ut = u k  + A, the LHS factors sinh( u k  - ui), sinh( ui - U/ + 
A )  vanish. The LHS therefore becomes O/O, and (3.18) can be said to be satisfied by 
(3.6), for i = 1 , .  . . , n. 

The Bethe ansatz can also be applied to the diagonal-to-diagonal transfer matrix 
(Kelland 1974), or (by using helical boundary conditions) to the single-vertex transfer 
matrix (Baxter 1969). For a solvable six-vertex model, one always finds that the 
eigenvector has the form (3.2) (possibly with some modification of (3.18)). This is 
because (3.2) is a general solution of the local vertex recurrence relation (2.8). 

To summarise: the partition function Z ( X  I V )  of any Z-invariant six-vertex model 
is given by (3.17), (3.16), (3.2) and (3.1), i.e. it is given by a Bethe ansatz. Unlike the 
usual applications of the Bethe ansatz, it is not necessary to solve the set of equations 
(3.18) for ul, . . . , U,; instead they are simply some permutation of the left-rapidities. 
( In  fact this is a solution of (3.18).) 

If, as is often the case, no two lines of 2 are in the disjoint configuration 2(b), 
then we can take U', . . . , U, = U', . . . , U,. 

4. Inhomogeneous square lattice 

We can specialise our result to the square lattice of r rows and s columns, shown in 
figure 6. Let U', . . , , U, be the rapidities of the left-hand ends of the horizontal lines, 
and w l ,  . . . , w, the rapidities of the lower ends of the vertical lines. Take B to be at 
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Wl U2 vs 

Figure 6. The square lattice of r rows and s columns, with left-rapidities u I ,  . . . , U,, 
W I ,  . . . , w,. 

the top-left corner, as indicated. Then ul , . . . , U,, w ,  , . . . , w, are all ‘left-rapidities’ in 
the sense of §§ 2 and 3. The Boltzmann weights are given by (2.3), so for instance the 
weight of the arrow configuration shown at site P is f( w2 - U,). 

The full set of rapidities used in (3.1) is U,, . . . , u 2 , ,  where 

n = r + s  

U,+,,. . . , U, = W I , .  . . , w, 

U,+,,. . . , U,+, = U, + A , .  . . , U I  + A 
(4.1) 

U,+,+,,. . . , ~ 2 ,  = w,+A,.  . . , w,+h.  

The indexes of the sequences on the RHS of the last two equations are in decreasing 
order; U,,. . . , U, have the same meaning here as in the previous sections. 

The parameters U,, . . . , U, in (3.2) are the ‘left-rapidities’, so we can take 

UI, . . . , U, = U , ,  * * . , U, 
(4.2) 

U , + l , .  . . , U, = w , , .  . * ,  w,. 

The partition function Z ( X  I V )  is now given by (3.17), (3.16), (3.2) and (3.1). As 
was remarked in § 1, (3.2) is a sum of n !  terms, so is still a long way from being 
immediately useful. Also, whenever any two of u I ,  . . . , U, become equal, the sum 
(3.2) contains infinite terms, but they add together in pairs to give a finite total. For 
the homogeneous six-vertex model (which is the usual case of interest), we have 
U ,  =.  . . = U, and w ,  =.  . . = w,. Thus many of U,,. . . , U, are equal, and a large number 
of delicate limits would need to be taken in order to use (3.2) as written. 

Obviously it would be a great improvement if (3.2) could be cast in a more tractable 
form, perhaps using ideas similar to those employed by Gaudin et a1 (1981), and 
Korepin (1982), for calculating the normalisation (f If) of transfer matrix eigenvectors. 

One idea is to substitutef(X1 VI V,) into these normalisation expressions: the result 
can be regarded as the combined partition function of two Z-invariant models M and 
M on 2, joined at their boundaries and summed over all allowed boundary arrow 
arrangements. The ‘conjugate’ f off is given ( p  162 of Baxter 1973) by interchanging 
the expressions U - U, + A and uj - U in (3.1), and replacing U, - uj + A by ui - uj - A in 



Perimeter Bethe ansatz 2567 

(3.2). Each function c$( U, x)  then contains factors sinh( U - u k ) ,  for all left-rapidities 
uk. These factors must be removed (corresponding to dividing by c )  before setting 
U =  v,. 

Sadly, it appears that the resulting expression for (flf) exactly vanishes (even 
though it is a sum of non-zero terms). This can happen because M and it? cannot 
both have only positive weights. (One can also say that the 2n-column transfer matrix 
with eigenvectorf cannot be Hermitian.) This shows thatf(XIV1 y ) ,  with V satisfying 
(2.1), is a particularly special case of the Bethe ansatz. 
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